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Simplification of local energy transfer theory of incompressible,
isotropic, nonstationary turbulence
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We show that the simplification or reduction of dimension in the local energy tra(lsier) theory of
incompressible, isotropic, nonstationary turbulence can be achieved by using the transitive property of the
propagator with respect to intermediate times along with the supplemental equ&tikrt,t)
=H(k;t,t")Q(k;t,t’) and not along with theQ(k;t,t")=H(k;t,t")Q(k;t’,t’), which has been suggested by
Oberlack, McComb, and QuinfPhys. Rev. E63, 026308(2001]. Further, we point out that the analysis
presented by Oberlacgt al. for the limiting case of viscosity approaching zero is incorrect and does not
comply with the numerical solutions of LET theory.
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I. INTRODUCTION Q(k;t,t) = H(k;t,t")Q(k;t,t’") Ot=t', (2)

An attempt.to solve the closure proplem 9f fluid .turbu'where Q(k;t,t") is a scalar function related to the velocity
lence led Kraichnan to propose the direct interaction ap-

oo . . correlationQ;,(k, -k ;t,t"). Further, we discuss the incorrect-
proximation(DIA) [1,2] as a pioneer renormalized perturba- . . L
! . ness in the Oberlackt al. work on the partial solution in the
tion theory(RPT) followed by other RPTs which have been .=~ . : .

. . . . -~ limiting case of viscosity(v) tending to zero.

reviewed from time to timg3—7]. In this paper, our main
concern is with local energy transf@tET) theory of isotro-
pic turbulence, which is compatible with the Kolmogorov  II. SIMPLIFICATION OF LET THEORY EQUATIONS
spectrum[4,8]. Based on Edwards’ theof], the LET was
proposed by McComHl10] in a Eulerian framework and,
since then, has evolved into a closed set of equations co
prised of the fluctuation-dissipation relation and equation
governing the evolution of two-time and single-time velocity
correlations of isotropic turbulent flow fiel®,11]. The LET

In this section, first we present the closed set of equations
pfor LET theory for completeness, and any other equésion
gncorporated in the LET will be referred to as supplemental
equatiornts) or relatior(s) [e.g., Eqs(1) and(2) are supple-
mental equatior]s Then the simplification of the LET equa-
has remained under persistent surveillance, especially bPnS Will be discussed. The closed set of LET theory equa-

McComb and co-workers, for its performance and accom- ons [8.’11’14 qonsists of the generalized fluctuation-
plishments in cases of isotropic turbulence and related padlissipation relation for the propagatddi,(k;t,t’), and
sive scalar convectiojl1-16. The LET's compatibility equa}tlons governing the evolution of two-time yelocn_y cor-
with the Kolmogorov spectrurpd] despite its failure to com-  relation Qin(k,k’;t,t ):<“i(|f't)un(k ) and, single-time

ply with random Galilean invariancgl7], its encouraging Velocity correlationQp(k k';t,)=(ui(k,us(k’, 1)) of the
performance, and its computational simplicity relative tovelocity field ui(k,t) in the Fourier wave-vector—time-t)
some other RPTH,14] are certain niceties of the LET. In a domain. For isotropic turbulence, these statistical properties
recent work of Oberlaclet al. [18], the LET equations for may be further written as

incompressible, isotropic, nonstationary turbulence are fur-

ther simplified or reduced in dimension by incorporating so- Hin(K;t,t') = Pin(K)H(k;t,t"), 3)
lution of supplemental functional equation representing the
transitive property of the propagator with respect to interme- Qin(k,k";t,t") = P, (k)Q(Kk;t,t") ok + k'), (4)
diate times, written as

H(k;t,t") =H(k;t,9)H(k;st’) Ot=s=>t' (1) Qin(k,k";t,1) = Pin(k)Q(K;t,t) 8(k + k), 5

along with one of the LET equations, namely the fluctuation-where represents the Dirac delta function and the projector
dissipation relation. Here, Eq1) is a scalar form of the P;(k)=6;-kkk? k=|k|, andg; is the Kronecker delta. The
functional equation for the propagator functiety(k;t,t’). LET equations foH(k;t,t"), Q(k;t,t’), andQ(k;t,t) for in-

In this paper, we show that the derivation provided by Obercompressible, isotropic, nonstationary turbulence may be
lack et al. [18] suffers from error and their simplified equa- written as

tions can be obtained only after incorporating another ) , . )
supplemental equation, Qk;t,t") =H(k;t,t")Q(k;t',t"), Ot=t, (6)

(% + vk2>Q(k;t,t’) =P(k;t,t'), (7)
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(% + kaz) Q(k;t,t) = 2P(K;t,1),

where the inertial transfer terf(k;t,t’) is

’ t
P(k;t,t’)=fd3|oL(k,|0)Ut dsH(k;t’,S)Q(p;t,S)Q(lk—pl;t,S)—f dsH(p;t,S)Q(k;t’,S)Q(lk—pl;t,S)]
0 0

and Eq.(6) represents the generalized fluctuation-dissipation

relation. Also

[(k? + p?) = kp(1 + 2u?)](1 - u?)kp
k?+ p® = 2kpp

L(k,p) = (10

andu is the cosine of the angle between the veckoendp.

Here we should mention that in the derivation of the LET

theory, McComi[8] invoked

ui(k,t) =H;y(k;t,tHun(k,t'), (11)

where

Hin(k:tt) = Ha(k; L 9H(k:st) Ot=s=>t (12)

with H;,(k ;t,t) =P;,(k), for the derivation of the equation for
the statistically sharp propagatét,, whose form has been
evolved into the final Eq(6) for the homogeneous isotropic
turbulence[11,14. The supplemental E@2) can be derived
by multiplying Eq.(11) with uy(-k,t), taking the ensemble
average, and using Eg8)—(5). Also, the supplemental Eq.
(1) can be obtained from E¢12) by using Eq.(3).

Simplification of the LET equation§he dimensionality
of the LET equation$6)—(8) was recently reduced by Ober-
lack et al.[18] by incorporating the supplemental Ed) and
the LET equatior{6). Oberlacket al. have obtained the ana-
lytical form for H(k;t,t") by solving Eq.(1) as

#(k;t)
pk;t')”
It should be noted that in E@13), t=t' and as the propaga-
tor satisfies

Hk;t,t') = ehko-nkt) = (13

Hk:t',t)=0 Ot' <t, (14)

the right-hand sidgrhs) of Eq. (13) does not represent a
solution for H(k;t’",t) whent’ <t. Now inserting Eq.(13)
into Eq. (6), we obtain

Qlk;tt") = eIt ), (15)
which is written by Oberlaclet al. as
Q(k;t,t') = ktrakt) = (ki ytk;t),  (16)
where
e (k;t',t")
&) = kIt 1) = o) e (1)
oty N

Further, Oberlaclet al. have invoked the symmetry inand
t’ for Q(k;t,t), i.e.,
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(8
9
[
Qk;t,t') =Q(k;t",1), (18
and by substituting it in Eq.16) they have obtained
dk ) y(k;t') = plk;t) lk;t). (19

This relation plays a crucial role in simplifying the LET
equations. In fact, Oberlaalt al. are not correct in using the
symmetry property. This is because, though E@) holds
true, the right-hand sides of Eq4.5) and(16) do not possess
symmetry due to the involveHi(k;t,t"), which is not sym-
metric int andt’ asH(k;t’,t)=00t’ <t. Also, if Oberlacket
al. are correct, then substitution fap(k;t’) and (k;t)
should give uQ(k;t’,t). But instead we obtain

(k) (k) =H(K;t",)Q(k;t,t) =0 # Q(k;t',t) (20)

whent’ <t.

Now we present correct derivation of E@.9). Consider
the use of an additional supplemental equation or relation
given by Eq.(2). This Eg.(2) along with the LET equation
(6) allows us to write

Q(k;t,t) = H(k;t, t")H(k;t,t)Q(k;t’,t") (21
and equivalently
B B
Qk;t,t)= [qﬁ(k;t’)] Q(k;t',t"), (22

which yields Eq.(19) asQ(k;t,t)/ ¢(k;t) = i(k;t) for anyt.
Thus the correct derivation of Eq19) requires the addi-
tional relation(2) which can be derived from Eql1), as
mentioned earlier, but cannot be derived by using the LET
equation(6) and the supplemental equati@h. Further, fol-
lowing Oberlacket al. we can write Eq(19) as

oy _okt) 1
wk;t)  wk;t’) k)
and the final solution forQ(k;t,t’) and H(k;t,t’) can be

(23

obtained by merging y(k) in ¢(k;t), i.e., replacing
[¥(0]Y2¢(k;t) by ¢(k;t), written as
Qlk;t,t") = (k) (k;t'), (24)
o S
H(k;t,t') = Skt Ot <t. (25

Equations(24) and (25) suggest that the solutions for
Q(k;t,t") andH(k;t,t") can be written in terms of a single
function ¢ and for which a governing equation can be ob-
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tained from the other Egg¢7) and(8) of the LET theory. We have to abandon the use of EJ). Consequently, Eq(8)
have two Eqgs.(7) and (8) to obtain an equation for one would then generate the required equationgomow, sub-
unknown ¢. But we indicate here that E7) yields a con-  stituting Eqs.(24) and(25) into the LET theory Eq(8), the
straint that is incorrect for the isotropic turbulence and weequation forg(k;t) can be written as

9 2 3 #(p;t) p(p;s) Pk — pl; D) (lk = pl;s)
(& +vk) (k;t) = fdkap)f b9

j FoLk,p) f gs PV ‘“p Ltk - pl0 ok - ol 26

Following Oberlacket al.,, simplifying Eq.(7) by using Eqs. solution of LET theory’s equations. By substituting the sup-
(24) and(25), and then differentiating with respectttoyield  position(28) in Eq. (25), we obtain
the constraint )
Hktt) = 22 gy <t, 29
f oL (k,p)H(p:1) B(pit') 9t
which is independent ok and is not correct. In fact,
Xk =pl;it)p(k —=p|;t')=0 Ot' <t, (27)  H(k;t,t") depends ork for the LET theory as exhibited by

. : the numerical solution of LET equatiorj43]. And if one
which suggests that the first term on the rhs of E2f) assumes an exponential forgee ?'or exgmgle Ref8))

vanishes. This is incorrect for isotropic turbulence, as it is
not consistent with the numerical solution of the LET equa- H(k:t,t') = et) Ot=t (30)
tions. Also the first term is responsible for quantifying the

nonzero forcing term arising in the model representations fowherew, is a function ofk, then comparing it with Eq(13)
DIA [19] and Edwards’s theorj9] when extended to non- suggests a product structure fuk;t) and not for thep(k;t).
steady turbulence casg®0]. Thus we abandon Eg7) and

constraint(27) for simplification of the LET and consider Eq. IIl. CONCLUDING REMARKS

(26) as the required final equation faeF for the simplified ) )

local energy transfe(SLET) theory obtained from the closed ~ The LET theory is comprised of a set of three E@—(8)

set of Eqs(2), (2), and(8). having three unknown dependent variabléfk;t,t’),

We should mention here that, within the framework of theQ(K;t,t"), and Q(k;t,t). Using Eg.(6), we can eliminate
LET theory[8], a variant of the closed set of LET equations H(k;t,t") from Egs.(7) and (8), thus reducing the dimen-
can be formed by replacing E@6) with Eq. (2), i.e., by sionality in the dependent variables to two variables
considering the closed set of Eq®), (7), and(8). The nu-  Q(k;t,t") andQ(k;t,t). We have shown that the dimension-
merical solutions of this variant of LEJVLET), SLET, and ality can be further reduced to one varialgék;t) by incor-
their comparative studies with the numerical solution of theporating supplemental Eqel) and (2) and not by incorpo-
LET will be considered in future work. rating Eq.(1) and using symmetry property fa@(k;t,t’)

Now we discuss the case of-0 given by Oberlacletal.  along with the fluctuation-dissipation relatiaie) as sug-
They have provided the partial solution of the simplified gested by Oberlackt al. [18]. It should be noted that incor-
LET theory equation fogp(k;t) by substitutingy=0 and sup-  poration of the supplemental equations results in E24)

posing product structure fap(k;t) having the form and(25), which suggest tha@(k;t,t’) andH(k;t,t’) are al-
o ways positive quantities for any values kf t, andt’ as
$(k;t) =f(kg(t). (28) o(k;t)=[ (k) V%"V =0, whereas numerical solutions for

Now we show that this suppositiqi28) is in fact incorrect LET equations exhibit negative values f@(k;t,t’) and
and does not provide a result consistent with the numericat(k;t,t’) for certain values ok, t, andt’ [13].
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