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We show that the simplification or reduction of dimension in the local energy transfer(LET) theory of
incompressible, isotropic, nonstationary turbulence can be achieved by using the transitive property of the
propagator with respect to intermediate times along with the supplemental equationQsk; t ,td
=Hsk; t ,t8dQsk; t ,t8d and not along with theQsk; t ,t8d=Hsk; t ,t8dQsk; t8 ,t8d, which has been suggested by
Oberlack, McComb, and Quinn[Phys. Rev. E63, 026308(2001)]. Further, we point out that the analysis
presented by Oberlacket al. for the limiting case of viscosity approaching zero is incorrect and does not
comply with the numerical solutions of LET theory.
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I. INTRODUCTION

An attempt to solve the closure problem of fluid turbu-
lence led Kraichnan to propose the direct interaction ap-
proximation(DIA ) [1,2] as a pioneer renormalized perturba-
tion theory(RPT) followed by other RPTs which have been
reviewed from time to time[3–7]. In this paper, our main
concern is with local energy transfer(LET) theory of isotro-
pic turbulence, which is compatible with the Kolmogorov
spectrum[4,8]. Based on Edwards’ theory[9], the LET was
proposed by McComb[10] in a Eulerian framework and,
since then, has evolved into a closed set of equations com-
prised of the fluctuation-dissipation relation and equations
governing the evolution of two-time and single-time velocity
correlations of isotropic turbulent flow field[8,11]. The LET
has remained under persistent surveillance, especially by
McComb and co-workers, for its performance and accom-
plishments in cases of isotropic turbulence and related pas-
sive scalar convection[11–16]. The LET’s compatibility
with the Kolmogorov spectrum[4] despite its failure to com-
ply with random Galilean invariance[17], its encouraging
performance, and its computational simplicity relative to
some other RPTs[4,14] are certain niceties of the LET. In a
recent work of Oberlacket al. [18], the LET equations for
incompressible, isotropic, nonstationary turbulence are fur-
ther simplified or reduced in dimension by incorporating so-
lution of supplemental functional equation representing the
transitive property of the propagator with respect to interme-
diate times, written as

Hsk;t,t8d = Hsk;t,sdHsk;s,t8d ∀ t ù sù t8 s1d

along with one of the LET equations, namely the fluctuation-
dissipation relation. Here, Eq.(1) is a scalar form of the
functional equation for the propagator functionHijsk ; t ,t8d.
In this paper, we show that the derivation provided by Ober-
lack et al. [18] suffers from error and their simplified equa-
tions can be obtained only after incorporating another
supplemental equation,

Qsk;t,td = Hsk;t,t8dQsk;t,t8d ∀ t ù t8, s2d

whereQsk; t ,t8d is a scalar function related to the velocity
correlationQinsk ,−k ; t ,t8d. Further, we discuss the incorrect-
ness in the Oberlacket al. work on the partial solution in the
limiting case of viscositysnd tending to zero.

II. SIMPLIFICATION OF LET THEORY EQUATIONS

In this section, first we present the closed set of equations
for LET theory for completeness, and any other equation(s)
incorporated in the LET will be referred to as supplemental
equation(s) or relation(s) [e.g., Eqs.(1) and (2) are supple-
mental equations]. Then the simplification of the LET equa-
tions will be discussed. The closed set of LET theory equa-
tions [8,11,14] consists of the generalized fluctuation-
dissipation relation for the propagatorHinsk ; t ,t8d, and
equations governing the evolution of two-time velocity cor-
relation Qinsk ,k8 ; t ,t8d=kuisk ,tdunsk8 ,t8dl and single-time
velocity correlationQinsk ,k8 ; t ,td=kuisk ,tdunsk8 ,tdl of the
velocity field uisk ,td in the Fourier wave-vector–timesk-td
domain. For isotropic turbulence, these statistical properties
may be further written as

Hinsk ;t,t8d = PinskdHsk;t,t8d, s3d

Qinsk,k8;t,t8d = PinskdQsk;t,t8ddsk + k8d, s4d

Qinsk,k8;t,td = PinskdQsk;t,tddsk + k8d, s5d

whered represents the Dirac delta function and the projector
Pijskd=dij −kikjk

−2, k= uk u, anddij is the Kronecker delta. The
LET equations forHsk; t ,t8d, Qsk; t ,t8d, andQsk; t ,td for in-
compressible, isotropic, nonstationary turbulence may be
written as

Qsk;t,t8d = Hsk;t,t8dQsk;t8,t8d, ∀ t ù t8, s6d

S ]

] t
+ nk2DQsk;t,t8d = Psk;t,t8d, s7d
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S ]

] t
+ 2nk2DQsk;t,td = 2Psk;t,td, s8d

where the inertial transfer termPsk; t ,t8d is

Psk;t,t8d =E d3pLsk,pdFE
0

t8
dsHsk;t8,sdQsp;t,sdQsuk − pu;t,sd −E

0

t

dsHsp;t,sdQsk;t8,sdQsuk − pu;t,sdG s9d

and Eq.(6) represents the generalized fluctuation-dissipation
relation. Also

Lsk,pd =
fmsk2 + p2d − kps1 + 2m2dgs1 − m2dkp

k2 + p2 − 2kpm
s10d

andm is the cosine of the angle between the vectorsk andp.
Here we should mention that in the derivation of the LET

theory, McComb[8] invoked

uisk,td = Hinsk ;t,t8dunsk,t8d, s11d

where

Hinsk ;t,t8d = Hiask ;t,sdHansk ;s,t8d ∀ t ù sù t8 s12d

with Hinsk ; t ,td=Pinskd, for the derivation of the equation for
the statistically sharp propagatorHin whose form has been
evolved into the final Eq.(6) for the homogeneous isotropic
turbulence[11,14]. The supplemental Eq.(2) can be derived
by multiplying Eq. (11) with uas−k ,td, taking the ensemble
average, and using Eqs.(3)–(5). Also, the supplemental Eq.
(1) can be obtained from Eq.(12) by using Eq.(3).

Simplification of the LET equations. The dimensionality
of the LET equations(6)–(8) was recently reduced by Ober-
lack et al. [18] by incorporating the supplemental Eq.(1) and
the LET equation(6). Oberlacket al. have obtained the ana-
lytical form for Hsk; t ,t8d by solving Eq.(1) as

Hsk;t,t8d = ehsk;td−hsk;t8d ;
fsk;td
fsk;t8d

. s13d

It should be noted that in Eq.(13), tù t8 and as the propaga-
tor satisfies

Hsk;t8,td = 0 ∀ t8 , t, s14d

the right-hand side(rhs) of Eq. (13) does not represent a
solution for Hsk; t8 ,td when t8, t. Now inserting Eq.(13)
into Eq. (6), we obtain

Qsk;t,t8d = ehsk;td−hsk;t8dQsk;t8,t8d, s15d

which is written by Oberlacket al. as

Qsk;t,t8d = ehsk;td+qsk;t8d ; fsk;tdcsk;t8d, s16d

where

eqsk;t8d = e−hsk;t8dQsk;t8,t8d ;
Qsk;t8,t8d

fsk;t8d
= csk;t8d. s17d

Further, Oberlacket al. have invoked the symmetry int and
t8 for Qsk; t ,t8d, i.e.,

Qsk;t,t8d = Qsk;t8,td, s18d

and by substituting it in Eq.(16) they have obtained

fsk;tdcsk;t8d = fsk;t8dcsk;td. s19d

This relation plays a crucial role in simplifying the LET
equations. In fact, Oberlacket al. are not correct in using the
symmetry property. This is because, though Eq.(18) holds
true, the right-hand sides of Eqs.(15) and(16) do not possess
symmetry due to the involvedHsk; t ,t8d, which is not sym-
metric in t andt8 asHsk; t8 ,td=0∀ t8, t. Also, if Oberlacket
al. are correct, then substitution forfsk; t8d and csk; td
should give usQsk; t8 ,td. But instead we obtain

fsk;t8dcsk;td = Hsk;t8,tdQsk;t,td = 0 Þ Qsk;t8,td s20d

when t8, t.
Now we present correct derivation of Eq.(19). Consider

the use of an additional supplemental equation or relation
given by Eq.(2). This Eq.(2) along with the LET equation
(6) allows us to write

Qsk;t,td = Hsk;t,t8dHsk;t,t8dQsk;t8,t8d s21d

and equivalently

Qsk;t,td = F fsk;td
fsk;t8d

G2

Qsk;t8,t8d, s22d

which yields Eq.(19) asQsk; t ,td /fsk; td;csk; td for any t.
Thus the correct derivation of Eq.(19) requires the addi-
tional relation(2) which can be derived from Eq.(11), as
mentioned earlier, but cannot be derived by using the LET
equation(6) and the supplemental equation(1). Further, fol-
lowing Oberlacket al. we can write Eq.(19) as

fsk;td
csk;td

=
fsk;t8d
csk;t8d

;
1

gskd
s23d

and the final solution forQsk; t ,t8d and Hsk; t ,t8d can be
obtained by merging gskd in fsk; td, i.e., replacing
fgskdg1/2fsk; td by fsk; td, written as

Qsk;t,t8d = fsk;tdfsk;t8d, s24d

Hsk;t,t8d =
fsk;td
fsk;t8d

∀ t8 ø t. s25d

Equations(24) and (25) suggest that the solutions for
Qsk; t ,t8d and Hsk; t ,t8d can be written in terms of a single
function f and for which a governing equation can be ob-
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tained from the other Eqs.(7) and(8) of the LET theory. We
have two Eqs.(7) and (8) to obtain an equation for one
unknownf. But we indicate here that Eq.(7) yields a con-
straint that is incorrect for the isotropic turbulence and we

have to abandon the use of Eq.(7). Consequently, Eq.(8)
would then generate the required equation forf. Now, sub-
stituting Eqs.(24) and (25) into the LET theory Eq.(8), the
equation forfsk; td can be written as

S ]

] t
+ nk2Dfsk;td =E d3pLsk,pdE

0

t

ds
fsp;tdfsp;sdfsuk − pu;tdfsuk − pu;sd

fsk;sd

−E d3pLsk,pdE
0

t

ds
fsp;td
fsp;sd

fsk;sdfsuk − pu;tdfsuk − pu;sd. s26d

Following Oberlacket al., simplifying Eq.(7) by using Eqs.
(24) and(25), and then differentiating with respect tot8 yield
the constraint

E d3pLsk,pdfsp;tdfsp;t8d

3fsuk − pu;tdfsuk − pu;t8d = 0 ∀ t8 , t, s27d

which suggests that the first term on the rhs of Eq.(26)
vanishes. This is incorrect for isotropic turbulence, as it is
not consistent with the numerical solution of the LET equa-
tions. Also the first term is responsible for quantifying the
nonzero forcing term arising in the model representations for
DIA [19] and Edwards’s theory[9] when extended to non-
steady turbulence cases[20]. Thus we abandon Eq.(7) and
constraint(27) for simplification of the LET and consider Eq.
(26) as the required final equation forf for the simplified
local energy transfer(SLET) theory obtained from the closed
set of Eqs.(1), (2), and(8).

We should mention here that, within the framework of the
LET theory[8], a variant of the closed set of LET equations
can be formed by replacing Eq.(6) with Eq. (2), i.e., by
considering the closed set of Eqs.(2), (7), and (8). The nu-
merical solutions of this variant of LET(VLET), SLET, and
their comparative studies with the numerical solution of the
LET will be considered in future work.

Now we discuss the case ofn→0 given by Oberlacket al.
They have provided the partial solution of the simplified
LET theory equation forfsk; td by substitutingn=0 and sup-
posing product structure forfsk; td having the form

fsk;td = fskdgstd. s28d

Now we show that this supposition(28) is in fact incorrect
and does not provide a result consistent with the numerical

solution of LET theory’s equations. By substituting the sup-
position (28) in Eq. (25), we obtain

Hsk;t,t8d =
gstd
gst8d

∀ t8 ø t, s29d

which is independent ofk and is not correct. In fact,
Hsk; t ,t8d depends onk for the LET theory as exhibited by
the numerical solution of LET equations[13]. And if one
assumes an exponential form(see, for example, Ref.[8])

Hsk;t,t8d = e−vkst−t8d ∀ t ù t8, s30d

wherevk is a function ofk, then comparing it with Eq.(13)
suggests a product structure forhsk; td and not for thefsk; td.

III. CONCLUDING REMARKS

The LET theory is comprised of a set of three Eqs.(6)–(8)
having three unknown dependent variablesHsk; t ,t8d,
Qsk; t ,t8d, and Qsk; t ,td. Using Eq. (6), we can eliminate
Hsk; t ,t8d from Eqs. (7) and (8), thus reducing the dimen-
sionality in the dependent variables to two variables
Qsk; t ,t8d andQsk; t ,td. We have shown that the dimension-
ality can be further reduced to one variablefsk; td by incor-
porating supplemental Eqs.(1) and (2) and not by incorpo-
rating Eq. (1) and using symmetry property forQsk; t ,t8d
along with the fluctuation-dissipation relation(6) as sug-
gested by Oberlacket al. [18]. It should be noted that incor-
poration of the supplemental equations results in Eqs.(24)
and (25), which suggest thatQsk; t ,t8d andHsk; t ,t8d are al-
ways positive quantities for any values ofk, t, and t8 as
fsk; td=fgskdg1/2ehsk;tdù0, whereas numerical solutions for
LET equations exhibit negative values forQsk; t ,t8d and
Hsk; t ,t8d for certain values ofk, t, andt8 [13].
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